inClust
可多模态数据集成、插补和跨模态生成,中科院&树兰医院&北师大团队开发带有掩码模块的深度生成框架
编辑 | 红菜苔随着单细胞技术的发展,许多细胞特性可以被测量。此外,多组学分析技术可以同时联合测量单个细胞中的两个或多个特征。为了快速处理积累的各种数据,需要多模态数据集成的计算方法。树兰医院、中国科学院和北京师范大学的合作团队提出了 inClust ,一个用于多组学分析的深度生成框架。它建立在之前针对转录组数据所开发的 inClust 的基础上,并增加了两个专为多模式数据处理设计的掩码模块:编码器前面的输入掩码模块和解码器后面的输出掩码模块。InClust 可用于整合来自相似细胞群的 scRNA-seq 和 M
2/5/2024 6:14:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
Gemini
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind