inClust
可多模态数据集成、插补和跨模态生成,中科院&树兰医院&北师大团队开发带有掩码模块的深度生成框架
编辑 | 红菜苔随着单细胞技术的发展,许多细胞特性可以被测量。此外,多组学分析技术可以同时联合测量单个细胞中的两个或多个特征。为了快速处理积累的各种数据,需要多模态数据集成的计算方法。树兰医院、中国科学院和北京师范大学的合作团队提出了 inClust ,一个用于多组学分析的深度生成框架。它建立在之前针对转录组数据所开发的 inClust 的基础上,并增加了两个专为多模式数据处理设计的掩码模块:编码器前面的输入掩码模块和解码器后面的输出掩码模块。InClust 可用于整合来自相似细胞群的 scRNA-seq 和 M
2/5/2024 6:14:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
AI for Science
苹果
Agent
腾讯
Claude
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
亚马逊
特斯拉
场景
深度学习
架构
Transformer
MCP
Copilot
编程
视觉