ImageNet-D
ImageNet-D 详解:严格评估神经网络的鲁棒性
神经网络在零样本图像分类中取得了惊人的成就,但它们真的能“看”得有多好呢? 现有的用于评估这些模型鲁棒性的数据集仅限于网络上的图像或通过耗时且资源密集的手动收集创建的图像。 这使得系统评估这些模型在面对未见数据和真实世界条件(包括背景、纹理和材质的变化)时的泛化能力变得困难。
2/20/2025 2:44:06 PM
二旺
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
AI for Science
苹果
Agent
腾讯
Claude
芯片
Stable Diffusion
蛋白质
具身智能
xAI
开发者
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
亚马逊
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉