ImageNet-D
ImageNet-D 详解:严格评估神经网络的鲁棒性
神经网络在零样本图像分类中取得了惊人的成就,但它们真的能“看”得有多好呢? 现有的用于评估这些模型鲁棒性的数据集仅限于网络上的图像或通过耗时且资源密集的手动收集创建的图像。 这使得系统评估这些模型在面对未见数据和真实世界条件(包括背景、纹理和材质的变化)时的泛化能力变得困难。
2/20/2025 2:44:06 PM
二旺
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
模型
数据
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind