ICLR 2025 Oral
ICLR 2025 Oral | IDEA联合清华北大提出ChartMoE:探究下游任务中多样化对齐MoE的表征和知识
最近,全球 AI 和机器学习顶会 ICLR 2025 公布了论文录取结果:由 IDEA、清华大学、北京大学、香港科技大学(广州)联合团队提出的 ChartMoE 成功入选 Oral (口头报告) 论文。 据了解,本届大会共收到 11672 篇论文,被选中做 Oral Presentation(口头报告)的比例约为 1.8%论文链接:::::不同于现阶段使用 MoE 架构的原始动机,ChartMoE 的目标不是扩展模型的容量,而是探究 MoE 这种 Sparse 结构在下游任务上的应用,通过对齐任务来增强模型对图表的理解能力,同时保持在其他通用任务上的性能。 不同于之前依赖 ramdom 或 co-upcycle 初始化的方法,ChartMoE 利用多样的对齐任务进行专家初始化。
4/1/2025 11:49:00 AM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP