ICLR 2025 Oral
ICLR 2025 Oral | IDEA联合清华北大提出ChartMoE:探究下游任务中多样化对齐MoE的表征和知识
最近,全球 AI 和机器学习顶会 ICLR 2025 公布了论文录取结果:由 IDEA、清华大学、北京大学、香港科技大学(广州)联合团队提出的 ChartMoE 成功入选 Oral (口头报告) 论文。 据了解,本届大会共收到 11672 篇论文,被选中做 Oral Presentation(口头报告)的比例约为 1.8%论文链接:::::不同于现阶段使用 MoE 架构的原始动机,ChartMoE 的目标不是扩展模型的容量,而是探究 MoE 这种 Sparse 结构在下游任务上的应用,通过对齐任务来增强模型对图表的理解能力,同时保持在其他通用任务上的性能。 不同于之前依赖 ramdom 或 co-upcycle 初始化的方法,ChartMoE 利用多样的对齐任务进行专家初始化。
4/1/2025 11:49:00 AM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
英伟达
马斯克
Anthropic
图像
AI创作
训练
LLM
论文
代码
苹果
AI for Science
算法
Agent
腾讯
Claude
芯片
Stable Diffusion
具身智能
蛋白质
xAI
开发者
人形机器人
生成式
神经网络
机器学习
AI视频
3D
RAG
大语言模型
Sora
百度
研究
字节跳动
GPU
生成
工具
华为
AGI
计算
大型语言模型
AI设计
生成式AI
搜索
视频生成
亚马逊
AI模型
DeepMind
特斯拉
场景
深度学习
Transformer
架构
Copilot
MCP
编程
视觉