黑盒模型
使用 SHAP 使机器学习模型变的可解释!!
SHAP 是一种解释机器学习模型预测结果的方法,它基于博弈论中的 Shapley 值理论。 它通过计算每个特征对模型输出的贡献度,帮助我们理解模型的决策过程。 SHAP 适用于各种类型的机器学习模型,使得黑盒模型(如深度神经网络、随机森林等)的预测更加透明、可解释。
11/4/2024 2:33:04 PM
程序员小寒
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
论文
英伟达
Anthropic
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
LLM
生成式
苹果
Claude
Agent
AI新词
神经网络
3D
AI for Science
机器学习
研究
生成
xAI
人形机器人
AI视频
计算
Sora
GPU
AI设计
百度
华为
工具
大语言模型
搜索
具身智能
场景
RAG
字节跳动
大型语言模型
预测
深度学习
伟达
视觉
Transformer
视频生成
AGI
神器推荐
亚马逊
架构
Copilot
DeepMind
应用
安全