韩国首尔大学
Nature子刊,基于量子实验数据进行机器学习,用于解决量子多体问题
编辑 | 萝卜皮量子硬件实现方面的进步使得人们能够获取传统计算机无法模拟的数据。将传统机器学习 (ML) 算法与这些数据相结合,有望揭示隐藏的模式。与仅使用传统计算机相比,这种混合方法扩展了可有效解决的问题类别,但由于当前量子计算机中噪声的普遍存在,这种方法仅能用于解决受限问题。韩国首尔大学(Seoul National University)的研究人员扩展了混合方法的适用性,用于解决多体物理学中的挑战,例如预测给定哈密顿量的基态性质以及对量子相进行分类。通过在具有 127 个量子比特的超导量子硬件上进行各种减少误
10/10/2024 12:08:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
模型
数据
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind