HAMSTER
机器人泛化能力大幅提升:HAMSTER层次化方法和VLA尺度轨迹预测,显著提升开放世界任务成功率
近年来,人工智能在视觉和自然语言处理方面取得了惊人的泛化能力,但在机器人操作领域,端到端方法往往需要大量昂贵的本域数据,且难以在不同硬件平台与开放场景下推广。 为此,HAMSTER(Hierarchical Action Models with Separated Path Representations)通过层次化架构,在高层利用域外数据微调的大模型(VLM)生成二维路径,中间表示解耦了任务规划与具体执行,让低层控制模块专注于实际动作控制。 实验表明,HAMSTER 在多种操作任务中都体现出更高的任务成功率与更好的跨平台泛化性能,并显著降低了对昂贵机器人演示数据的依赖。
3/10/2025 6:27:00 PM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
AI for Science
苹果
Agent
腾讯
Claude
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
亚马逊
AI模型
特斯拉
场景
深度学习
架构
Transformer
MCP
Copilot
编程
视觉