哈希算法
一致哈希算法:如何分群,突破集群的“领导者”限制?
一、一致哈希算法的背景1.1 传统哈希算法的问题在传统的哈希算法中,数据存储通常采用如下映射关系:node=hash(key)%Nnode = hash(key) \% Nkey:数据的键N:当前集群中节点的数量问题:当节点数量发生变化(例如从2个节点扩展到3个节点),几乎所有的键都会被重新分配到不同的节点上,导致大量数据迁移。 示例:2个节点:hash(key) % 2 → 节点0、节点1扩展到3个节点:hash(key) % 3 → 节点0、节点1、节点2可以看到,大部分数据的映射发生了变化。 1.2 一致哈希的引入一致哈希算法 使用了一个逻辑哈希环(Hash Ring)的概念,将整个哈希空间(0到2^32-1)组织成一个环形结构。
12/31/2024 10:55:38 AM
架构师秋天
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉