哈希算法
一致哈希算法:如何分群,突破集群的“领导者”限制?
一、一致哈希算法的背景1.1 传统哈希算法的问题在传统的哈希算法中,数据存储通常采用如下映射关系:node=hash(key)%Nnode = hash(key) \% Nkey:数据的键N:当前集群中节点的数量问题:当节点数量发生变化(例如从2个节点扩展到3个节点),几乎所有的键都会被重新分配到不同的节点上,导致大量数据迁移。 示例:2个节点:hash(key) % 2 → 节点0、节点1扩展到3个节点:hash(key) % 3 → 节点0、节点1、节点2可以看到,大部分数据的映射发生了变化。 1.2 一致哈希的引入一致哈希算法 使用了一个逻辑哈希环(Hash Ring)的概念,将整个哈希空间(0到2^32-1)组织成一个环形结构。
12/31/2024 10:55:38 AM
架构师秋天
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
AI设计
Claude
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
Transformer
LLM
字节跳动
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构