GRES
CVPR23 Highlight | 多模态新任务、新数据集:NTU提出广义引用分割问题GRES
引用表达分割(Referring Expression Segmentation,简称引用分割或RES)是一个基础的视觉语言多模态任务。给定一张图像和一个描述该图像中某个对象的自然语言表达式,RES旨在找到该目标对象并将其分割。现有的引用分割数据集和方法通常仅支持单目标表达式,即一个表达式指代一个目标对象。而对于多目标和无目标表达式的情况,则没有考虑在内。严重限制了引用分割的实际应用。基于这个问题,来自新加坡南洋理工大学的研究者们定义了一个名为广义引用分割(Generalized Referring Expression Segmentation,GRES)的新任务,将经典的引用分割扩展到允许表达式指代任意数量的目标对象。同时,文章还构建了第一个大规模的GRES数据集gRefCOCO,其同时包含多目标、无目标和单目标表达式。
6/30/2023 4:59:00 PM
MMLab
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉