GRES
CVPR23 Highlight | 多模态新任务、新数据集:NTU提出广义引用分割问题GRES
引用表达分割(Referring Expression Segmentation,简称引用分割或RES)是一个基础的视觉语言多模态任务。给定一张图像和一个描述该图像中某个对象的自然语言表达式,RES旨在找到该目标对象并将其分割。现有的引用分割数据集和方法通常仅支持单目标表达式,即一个表达式指代一个目标对象。而对于多目标和无目标表达式的情况,则没有考虑在内。严重限制了引用分割的实际应用。基于这个问题,来自新加坡南洋理工大学的研究者们定义了一个名为广义引用分割(Generalized Referring Expression Segmentation,GRES)的新任务,将经典的引用分割扩展到允许表达式指代任意数量的目标对象。同时,文章还构建了第一个大规模的GRES数据集gRefCOCO,其同时包含多目标、无目标和单目标表达式。
6/30/2023 4:59:00 PM
MMLab
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用