高效预训练长度缩放技术
字节跳动发布高效预训练长度缩放技术,突破长序列训练瓶颈
字节跳动宣布推出高效预训练长度缩放技术(Efficient Pretraining Length Scaling),通过创新的Parallel Hidden Decoding Transformer(PHD-Transformer)框架,显著提升大语言模型(LLM)在长序列预训练中的效率与性能。 据AIbase了解,该技术在保持推理效率的同时,支持高达2048K(2M)的上下文长度训练,解决了传统框架在数据异构性与计算平衡上的瓶颈。 相关研究已在arXiv公开,引发了AI研究社区的广泛关注。
4/23/2025 3:00:42 PM
AI在线
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
苹果
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
生成
人形机器人
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
MCP