复合物
华科大团队开发几何三角形感知蛋白质语言模型,预测蛋白质-蛋白质接触
编辑 | 萝卜皮有关相互作用蛋白质之间的残基-残基距离的信息对于蛋白质复合物的结构建模非常重要,并且对于理解蛋白质-蛋白质相互作用的分子机制也很有价值。随着深度学习的出现,人们开发了许多方法来准确预测单体的蛋白质内残基-残基接触。然而,准确预测蛋白质复合物,尤其是异源蛋白质复合物的蛋白质间残基-残基接触仍然具有挑战性。华中科技大学的研究人员开发了一种基于蛋白质语言模型的深度学习方法,通过在深度神经网络中引入三角形更新和三角形自注意力的三角形感知机制来预测蛋白质复合物的蛋白质间残基-残基接触(称为 DeepInter
11/21/2023 2:37:00 PM
ScienceAI
助力发现药物靶点,华科大开发深度迁移学习方法,预测跨膜蛋白
编辑 | 萝卜皮膜蛋白由大约四分之一的人类基因编码。链间残基-残基接触信息对于膜蛋白复合物的结构预测很重要,对于理解其分子机制很有价值。尽管已经提出了许多深度学习方法来预测膜蛋白中的蛋白内接触或螺旋-螺旋相互作用,但由于跨膜蛋白数量有限,准确预测其链间接触仍然具有挑战性。为了应对这一挑战,华中科技大学的研究人员利用从非跨膜蛋白大数据集中预先训练的知识,开发了一种深度迁移学习方法,用于预测跨膜蛋白复合物的链间接触,称为 DeepTMP。DeepTMP 利用几何三角形感知模块从蛋白质语言模型生成的共同进化信息中捕获正确
8/21/2023 5:31:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉