FPL
快1000倍,十万分之一误差,深度学习模型降低核聚变等离子体预测计算成本
编辑 | 2049在聚变能源研究领域,等离子体动力学模拟扮演着关键角色。 然而,非线性 Fokker-Planck-Landau(FPL)碰撞算子的计算成本极高,尤其在全托卡马克体积建模中,其计算时间随等离子体粒子种类数量 n 呈 O(n²) 增长,严重制约了模拟效率。 为突破这一瓶颈,来自蔚山国立科学技术院(UNIST)的研究人员开发了一种全新的深度学习框架——FPL-net,利用人工智能技术加速求解这一复杂问题。
3/6/2025 1:37:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉