Fine-tuning
RAG还是微调?微软出了一份特定领域大模型应用建设流程指南
检索增强生成(RAG)和微调(Fine-tuning)是提升大语言模型性能的两种常用方法,那么到底哪种方法更好?在建设特定领域的应用时哪种更高效?微软的这篇论文供你选择时进行参考。在构建大语言模型应用程序时通常有两种常见的方法来整合专有和特定领域的数据:检索增强生成和微调。检索增强生成通过外部数据增强提示,而微调将额外的知识整合到模型本身中。不过,对这两种方法的优缺点了解的却不够充分。本文中,来自微软的研究者引入一个新的关注点:为需要特定背景和自适应响应的行业(农业)创建 AI 助手。本文提出了一个全面的大语言模型
2/16/2024 5:27:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
代码
Anthropic
英伟达
算法
Stable Diffusion
芯片
智能体
训练
开发者
生成式
腾讯
蛋白质
苹果
AI新词
神经网络
3D
研究
生成
Claude
机器学习
LLM
计算
Sora
AI设计
AI for Science
AI视频
GPU
xAI
人形机器人
百度
华为
搜索
大语言模型
场景
Agent
字节跳动
预测
深度学习
伟达
工具
大型语言模型
Transformer
RAG
视觉
神器推荐
模态
Copilot
亚马逊
具身智能
LLaMA
文本
算力
驾驶
DeepMind