分子动力学
ICLR 2025 | Deep Signature 高效表征生物大分子复杂运动的新方法
编辑 | ScienceAI理解蛋白质动力学行为对于解析其功能机制和开发分子疗法至关重要。 然而,生物过程通常涉及复杂的高维动力学以及原子间相互作用,这对现有计算处理技术构成了巨大挑战。 本文介绍了来自香港城市大学李皓亮研究团队所提出的 Deep Signature,一个用于生物大分子复杂运动表征学习的深度学习框架。
2/11/2025 5:30:00 PM
ScienceAI
计算效率提升100倍以上,上交李金金团队开发基于Transformer的大模型用于从头算分子动力学
作者 | 陶科豪编辑 | 白菜叶精确模拟原子与分子的动态行为对于开发新一代高效能材料至关重要。然而,传统的从头算分子动力学(AIMD)模拟虽然提供了高精度的预测能力,但由于其高昂的计算成本和漫长的模拟时间,大大限制了研究的进度。例如,完成一个含 100 个原子的材料系统的 30 皮秒模拟,常常需要数月时间,这对于需要快速迭代和优化的新材料研发构成了巨大挑战。在这种背景下,一个能够显著加快这一过程的人工智能模型具有重要价值。面对这些挑战,上海交通大学人工智能与微结构实验室(AIMS-lab)开发了名为 T-AIMD
6/17/2024 3:06:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用