分块
RAG 中的语义分块:实现更优的上下文检索
检索增强生成(RAG)技术异军突起,席卷了整个大语言模型领域。 通过将大语言模型(LLMs)的强大能力与外部知识检索相结合,RAG使得模型能够生成准确且有依据的回复,即便在专业领域也不例外。 在每一个表现卓越的RAG流程背后,都有一个默默发挥关键作用的 “英雄”:分块技术,尤其是语义分块。
5/7/2025 8:35:11 AM
大模型之路
RAG分块优化之语义分块方法CrossFormer模型技术思路
笔者在前期文章中总结了RAG的分块《RAG常见13种分块策略大总结(一览表)》,本文介绍一个语义分段的工作,该工作解决的问题是文本语义分割,即将文档分割成多个具有连续语义的段落。 传统方法通常依赖于预处理文档以分段来解决输入长度限制问题,但这会导致段间关键语义信息的丢失。 RAG系统中的文本分块方法主要分为基于规则和基于LLM的方法。
4/2/2025 4:00:00 AM
余俊晖
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用