分块
系统梳理 RAG 系统的 21 种分块策略
检索增强生成(RAG)是许多 AI 工程师又爱又恨的技术(包括我)。 没错,因为从理论上看,它简单极了:“从你的定制数据中检索正确的上下文,然后让大语言模型基于此生成回答”。 但在实践中,你不得不面对海量杂乱无章的数据 —— 这些数据以你见过的最混乱随机的格式存储,接着就是数日绞尽脑汁的试错:调整文本块(tweaking chunks)切换嵌入模型(switching embedding models)替换检索器(swapping out retrievers)微调排序器(fine-tuning rankers)重写提示词(rewriting prompts)而模型依然回复:“我找不到足够的信息来回答你的问题”。
9/3/2025 4:00:45 AM
Baihai IDP
RAG 中的语义分块:实现更优的上下文检索
检索增强生成(RAG)技术异军突起,席卷了整个大语言模型领域。 通过将大语言模型(LLMs)的强大能力与外部知识检索相结合,RAG使得模型能够生成准确且有依据的回复,即便在专业领域也不例外。 在每一个表现卓越的RAG流程背后,都有一个默默发挥关键作用的 “英雄”:分块技术,尤其是语义分块。
5/7/2025 8:35:11 AM
大模型之路
RAG分块优化之语义分块方法CrossFormer模型技术思路
笔者在前期文章中总结了RAG的分块《RAG常见13种分块策略大总结(一览表)》,本文介绍一个语义分段的工作,该工作解决的问题是文本语义分割,即将文档分割成多个具有连续语义的段落。 传统方法通常依赖于预处理文档以分段来解决输入长度限制问题,但这会导致段间关键语义信息的丢失。 RAG系统中的文本分块方法主要分为基于规则和基于LLM的方法。
4/2/2025 4:00:00 AM
余俊晖
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
AI新词
智能体
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
计算
工具
Sora
GPU
华为
大语言模型
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
编程
DeepMind
亚马逊
特斯拉
AI模型