非模态分割
「AI透视眼」,三次马尔奖获得者Andrew带队解决任意物体遮挡补全难题
遮挡是计算机视觉很基础但依旧未解决的问题之一,因为遮挡意味着视觉信息的缺失,而机器视觉系统却依靠着视觉信息进行感知和理解,并且在现实世界中,物体之间的相互遮挡无处不在。牛津大学 VGG 实验室 Andrew Zisserman 团队最新工作系统性解决了任意物体的遮挡补全问题,并且为这一问题提出了一个新的更加精确的评估数据集。该工作受到了 MPI 大佬 Michael Black、CVPR 官方账号、南加州大学计算机系官方账号等在 X 平台的点赞。以下为论文「Amodal Ground Truth and Compl
3/8/2024 2:45:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
数据
机器人
大模型
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
论文
代码
LLM
算法
Stable Diffusion
芯片
腾讯
AI for Science
苹果
Claude
Agent
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
研究
人形机器人
生成
AI视频
百度
工具
RAG
大语言模型
Sora
华为
GPU
计算
具身智能
AI设计
字节跳动
搜索
大型语言模型
AGI
场景
深度学习
视频生成
架构
预测
视觉
DeepMind
伟达
Transformer
编程
神器推荐
AI模型
亚马逊
MCP