FedDAT
解密FedDAT:首个多模态异构联邦学习高效微调框架,突破数据异构与通信瓶颈!
FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning一、 一眼概览FedDAT提出了一种创新的双适配器教师框架(Dual-Adapter Teacher, DAT),结合参数高效微调和互知识蒸馏,解决了多模态异构联邦学习(FL)中的数据异构性问题,并在多个视觉-语言任务基准上取得了最优表现。 二、核心问题如何在多模态联邦学习环境中,在数据异构性和通信预算限制下,实现基础模型的高效分布式微调,以提升视觉-语言任务的性能,是本研究的核心问题。 三、 技术亮点1.
1/26/2025 9:07:46 AM
萍哥学AI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用