EOE
ICML 2024| 大语言模型助力基于CLIP的分布外检测任务
当训练数据集和测试数据集的分布相同时,机器学习模型可以表现出优越的性能。然而在开放世界环境中,模型经常会遇到分布外(Out-of-Distribution, OOD,下称“OOD”)样本,OOD样本可能会导致模型做出不可预测的行为,而错误的后果可能是致命的,尤其是在自动驾驶等高风险场景中 [1, 2]。因此OOD检测对于保障机器学习模型在实际部署中的可靠性至关重要。大多数OOD检测方法 [1, 3] 可以基于训练有素的分布内 (In-Distribution, ID) 分类器有效地检测 OOD 样本。然而,对于不同
7/1/2024 4:41:00 PM
新闻助手
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
AI模型