ELM
可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
编辑 | X几十年来,核聚变释放能量的「精妙」过程一直吸引着科学家们的研究兴趣。现在,在普林斯顿等离子体物理实验室(PPPL)中 ,科学家正借助人工智能,来解决人类面临的紧迫挑战:通过聚变等离子体产生清洁、可靠的能源。与传统的计算机代码不同,机器学习不仅仅是指令列表,它可以分析数据、推断特征之间的关系、从新知识中学习并适应。PPPL 研究人员相信,这种学习和适应能力可以通过多种方式改善他们对聚变反应的控制。这包括完善超热等离子体周围容器的设计、优化加热方法以及在越来越长的时间内保持反应的稳定控制。近日,PPPL 的
5/22/2024 7:20:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
AI设计
Claude
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
Transformer
LLM
字节跳动
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构