Effective Chart Dataset
ICCV 2025 | ECD:高质量合成图表数据集,提升开源MLLM图表理解能力
本文第一作者杨昱威,来自澳大利亚国立大学,合作者包括章泽宇(澳大利亚国立大学)、侯云钟(澳大利亚国立大学)、李卓婉(约翰霍普金斯大学)、Gaowen Liu(思科)、Ali Payani(思科)、丁源森(俄亥俄州立大学)以及郑良(澳大利亚国立大学)。 背景与动机在科研、新闻报道、数据分析等领域,图表是信息传递的核心载体。 要让多模态大语言模型(MLLMs)真正服务于科学研究,必须具备以下两个能力:1.
8/21/2025 9:22:00 PM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
Gemini
马斯克
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
3D
人形机器人
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
特斯拉
场景
AI模型
深度学习
亚马逊
架构
Transformer
MCP
编程
视觉
预测