ECOLE
准确率68.7%、召回率49.6%,牛津、EPFL等团队开发基于Transformer架构的WES数据体细胞和种系CNV调用程序
编辑 | 萝卜皮拷贝数变异(CNV)与多种遗传性疾病的病因有很大关联。利用全外显子组测序(WES)数据准确检测 CNV 一直是临床上长期追求的目标。尽管最近性能有所提高,但这是不可能的,因为算法大多精度低,专家策划的黄金标准调用集的召回率甚至更低。牛津大学(Oxford University)、瑞士洛桑联邦理工学院(EPFL)以及土耳其毕尔肯大学(Bilkent University)提出了一个基于深度学习的 WES 数据体细胞和种系 CNV 调用程序,名为 ECOLE。基于 Transformer 架构的变体,该
1/5/2024 12:06:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用