恶性
准确率达95.16%,快速识别恶性肿瘤细胞,厦大和上海交大团队开发域泛化深度学习算法
编辑 | 萝卜皮单细胞和空间转录组测序是两种最近优化的转录组测序方法,越来越多地用于研究癌症和相关疾病。细胞注释,特别是恶性细胞注释,对于这些研究中的深入分析至关重要。然而,当前的算法缺乏准确性和泛化性,使得难以一致、快速地从泛癌数据中推断出恶性细胞。为了解决这个问题,厦门大学和上海交通大学的研究团队提出了 Cancer-Finder,一种基于域泛化(Domain Generalization,DG)的深度学习算法,可以快速识别单细胞数据中的恶性细胞,平均准确率达到 95.16%。重要的是,通过用空间转录组数据集替
3/25/2024 5:52:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
代码
Anthropic
英伟达
算法
Stable Diffusion
芯片
智能体
训练
开发者
生成式
腾讯
蛋白质
苹果
AI新词
神经网络
3D
研究
生成
Claude
机器学习
LLM
计算
Sora
AI设计
AI for Science
AI视频
GPU
xAI
人形机器人
百度
华为
搜索
大语言模型
场景
Agent
字节跳动
预测
深度学习
伟达
工具
大型语言模型
Transformer
RAG
视觉
神器推荐
模态
Copilot
亚马逊
具身智能
LLaMA
文本
算力
驾驶
DeepMind