多模态RAG
多模态RAG技术:从语义抽取到VLM应用与规模化挑战
一、基于语义抽取的多模态 RAG多模态 RAG 的发展方向旨在构建一个高度集成的系统,能够无缝融合文本、图像和其它多媒体元素,为用户提供更丰富的信息交互体验。 实现多模态 RAG 系统的三种主要技术路径如下:传统对象识别与解析(雕花路线)传统的多模态文档处理首先会运用图像识别技术,如 OCR(Optical Character Recognition,光学字符识别),从图像中抽取出文字、表格和图片等元素。 之后,这些独立的对象会被进一步解析,转换成文本格式,以便于后续的信息检索与分析。
1/2/2025 8:36:25 AM
金海
多模态RAG构建指南:为AI系统提供更多可能性
译者 | 晶颜审校 | 重楼本文提供了关于如何使用Milvus构建多模态RAG系统以及如何为AI系统开辟各种可能性的深入指南。 局限于单一的数据格式已经逐渐落伍。 随着企业越来越依赖信息来做出关键决策,他们需要能够比较不同格式的数据。
12/6/2024 8:20:26 AM
晶颜
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
数据
机器人
大模型
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
论文
代码
LLM
算法
芯片
Stable Diffusion
腾讯
苹果
AI for Science
Claude
Agent
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
研究
人形机器人
生成
AI视频
百度
工具
RAG
大语言模型
Sora
华为
GPU
计算
具身智能
AI设计
字节跳动
搜索
大型语言模型
AGI
场景
深度学习
视频生成
架构
预测
视觉
DeepMind
伟达
Transformer
编程
AI模型
神器推荐
亚马逊
MCP