对比式非似然训练
像人类一样在批评中学习成长,1317条评语让LLaMA2胜率飙升30倍
除了分数,打出分数背后的理由对于大模型对齐更具价值。现有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。就像审稿意见不仅仅是一个分数,还包括许多接受或者拒绝的理由。那么,大语言模型能否也像人类一样利用语言反馈来改善自身呢?最近,香港中文大学和腾讯 AI Lab 的研究者们提出了一项名为对比式非似然训练(Contrastive Unlikelihood
2/4/2024 3:21:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
英伟达
论文
Anthropic
代码
训练
算法
AI新词
Stable Diffusion
芯片
LLM
蛋白质
开发者
腾讯
苹果
Claude
生成式
Agent
AI for Science
神经网络
3D
机器学习
研究
生成
xAI
人形机器人
AI视频
计算
Sora
百度
GPU
AI设计
华为
工具
大语言模型
RAG
搜索
具身智能
字节跳动
大型语言模型
场景
深度学习
预测
视频生成
伟达
视觉
Transformer
AGI
架构
亚马逊
神器推荐
Copilot
DeepMind
特斯拉
应用