DrugMGR
预测配体-靶标对的结合亲和力,哈工大开发新SOTA药物表示模型
编辑 | 白菜叶了解配体-靶标对的分子间相互作用是指导优化癌症药物研究的关键,这可以大大减轻湿实验室的负担。当前计算方法存在一些缺陷,限制了它们的实际应用。在这里,哈尔滨工业大学的研究人员在此提出了 DrugMGR,这是一种深度多粒度药物表示模型,能够预测每个配体-靶标对的结合亲和力和区域。通过对配体复杂的自然机制和蛋白质高级特征的多粒度表示学习,DrugMGR 几乎在所有数据集上都显著优于当前最先进的方法。并且,这是第一个同时使用图、卷积和基于注意力的信息分析蛋白质-配体复合物的模型。该研究以「DrugMGR:
5/11/2024 11:52:00 AM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind