东南大学
成功率提高四倍,东大、浙师大提出材料合成通用框架,整合 AI、高通量实验和化学先验知识
编辑 | X在过去几年中,数据驱动的机器学习 (ML) 技术已成为设计和发现先进材料的强大工具。然而,由于需要考虑前体、实验条件和反应物的可用性,材料合成通常比性质和结构预测复杂得多,并且很少有计算预测能在实验中实现。为了解决这些挑战,来自东南大学和浙江师范大学的研究团队,提出了一个集成高通量实验、化学先验知识以及子群发现(subgroup discovery)和支持向量机等机器学习技术的通用框架来指导材料的实验合成,能够揭示隐藏在高通量实验中的结构-性质关系,并从广阔的化学空间中快速筛选出具有高合成可行性的材料。
1/9/2024 2:34:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
AI新词
图像
Gemini
智能体
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
工具
计算
Sora
GPU
华为
大语言模型
RAG
具身智能
AI设计
字节跳动
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
编程
神器推荐
DeepMind
亚马逊
特斯拉
AI模型