DiG
效率高、成本低,从单一结构到平衡分布,微软AI分子预测框架登Nature子刊
编辑 | 紫罗近年来,深度学习技术在分子微观结构预测中取得了巨大的进展。然而,分子的宏观属性和功能往往取决于分子结构在平衡态下的分布,仅了解分子的微观结构还远远不够。获得这些分布的传统方法,如分子动力学模拟,但这些方法昂贵又耗时。在此,来自微软研究院科学智能中心(Microsoft Research AI4Science)的研究人员,提出了一种可用于预测分子结构平衡分布的深度学习框架,称为分布式图分析器(Distributional Graphormer,DiG)。DiG 框架能够有效生成不同的构象,并提供状态密度
5/14/2024 2:11:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
AI新词
智能体
Gemini
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
工具
计算
Sora
GPU
华为
大语言模型
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
编程
神器推荐
DeepMind
亚马逊
特斯拉
AI模型