调节剂
Nature子刊,川大团队机器学习结合MD,预测蛋白质变构,助力药物研发
编辑 | 萝卜皮变构药物为现代药物设计提供了一条新途径。然而,识别隐蔽的变构位点是一项艰巨的挑战。四川大学蒲雪梅教授、邵振华研究员团队提出了一种先进的计算流程,结合残基驱动的混合机器学习模型(RHML)和分子动力学(MD)模拟,成功识别出了变构位点、变构调节剂,并揭示了它们的调控机制。具体而言,在 β2 肾上腺素能受体(β2AR)中,团队发现了位于残基 D79^2.50、F282^6.44、N318^7.45和S319^7.46 附近的一个新的变构位点及潜在调节剂 ZINC5042。通过分子力学/广义 Born 表
9/25/2024 4:22:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用