电子结构
快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊
编辑 | KX两年前,清华大学物理系徐勇、段文晖研究组开发出高效精确的第一性原理电子结构深度学习方法 DeePH,可极大加速电子结构计算。近日,该团队开发了一种准确而有效的实空间重构方法(real-space reconstruction),将 DeepH 方法从原先仅支持原子基组推广至适用于平面波基组,使得 DeepH 方法可与所有密度泛函理论(DFT)程序兼容。而且,该重构方法比传统的基于投影的方法快几个数量级。这给深度学习电子结构计算方法带来了更高的精度和更好的泛化能力,并打通了其利用电子结构大数据作深度学习
10/10/2024 12:09:00 PM
ScienceAI
百万级原子模拟,从头算精度,北京科学智能研究院提出AI+大尺度电子结构模拟新方法
编辑 | KX在计算材料科学领域,准确高效地模拟材料的电子结构一直是一个非常关键而又极具挑战性的问题。基于密度泛函理论的第一性原理计算方法的高计算需求依然是大尺寸长时间材料模拟所面临的难题。北京科学智能研究院 (AI for Science Institute, Beijing) 提出了一种基于深度学习的高效紧束缚方法,称为 DeePTB,从而高效地表示具有从头算精度的材料电子结构,极大地简化了计算复杂度,并实现百万级大尺寸结构的电子、光电响应性质的计算模拟。当与分子动力学相结合时,DeePTB 可以同时促进原子和
8/15/2024 4:09:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
英伟达
Anthropic
论文
代码
AI新词
训练
算法
Stable Diffusion
芯片
LLM
蛋白质
开发者
腾讯
Claude
苹果
生成式
AI for Science
Agent
神经网络
3D
机器学习
研究
xAI
生成
人形机器人
AI视频
计算
百度
Sora
GPU
AI设计
华为
工具
大语言模型
RAG
搜索
具身智能
字节跳动
大型语言模型
场景
深度学习
预测
视频生成
伟达
视觉
Transformer
AGI
架构
亚马逊
神器推荐
Copilot
DeepMind
特斯拉
应用