DeepGP
糖蛋白组学新方法,复旦开发基于Transformer和GNN的混合端到端框架,登Nature子刊
编辑 | 萝卜皮蛋白质糖基化是糖基对蛋白质进行的一种翻译后修饰,在细胞的多种生理和病理功能中起着重要作用。糖蛋白质组学是在蛋白质组范围内研究蛋白质糖基化,利用液相色谱与串联质谱 (MS/MS) 联用技术获取糖基化位点、糖基化水平和糖结构的组合信息。然而,由于结构决定离子的出现有限,目前糖蛋白质组学的数据库搜索方法通常难以确定聚糖结构。虽然光谱搜索方法可以利用碎片强度来促进糖肽的结构鉴定,但是光谱库构建的困难阻碍了它们的应用。在最新的研究中,复旦大学的研究人员提出了 DeepGP,一种基于 Transformer 和
8/4/2024 7:57:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
英伟达
马斯克
Anthropic
图像
AI创作
训练
LLM
论文
代码
苹果
AI for Science
算法
Agent
腾讯
Claude
芯片
Stable Diffusion
具身智能
蛋白质
xAI
开发者
人形机器人
生成式
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
百度
研究
字节跳动
GPU
生成
工具
华为
AGI
计算
大型语言模型
AI设计
生成式AI
搜索
视频生成
亚马逊
AI模型
DeepMind
特斯拉
场景
深度学习
Transformer
架构
Copilot
MCP
编程
视觉