DeepAllo
DeepAllo:首次使用蛋白质语言模型和多任务学习进行变构位点预测
编辑 | 白菜叶变构效应是指一个位点的结合会扰乱远处位点的过程,由于其对蛋白质功能有显著的影响,正成为药物开发领域的一个重点研究领域。 识别变构口袋(位点)是一项极具挑战性的任务,目前已开发出多种技术,包括利用静态和口袋特征预测变构口袋的机器学习技术。 土耳其科奇大学(Koç University)的研究人员开发了 DeepAllo,是首个将微调蛋白质语言模型 (pLM) 与 FPocket 特征相结合的研究,目的是提高识别变构口袋相关技术的准确性。
7/17/2025 5:28:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
微软
智能
AI新词
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Claude
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
大语言模型
生成
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
架构
生成式AI
DeepMind
编程
视觉
Transformer
预测
AI模型
MCP
伟达
亚马逊