Critique-in-the-Loop
Scaling Law 撞墙?复旦团队大模型推理新思路:Two-Player架构打破自我反思瓶颈
在 AI 领域,近期的新闻焦点无疑是关于「Scaling Law 是否撞墙?」的辩论。这一曾经被视作大模型发展的第一性原理,如今却遭遇了挑战。在这样的背景下,研究人员开始意识到,与其单纯堆砌更多的训练算力和数据资源,不如让模型「花更多时间思考」。以 OpenAI 推出的 o1 模型为例,通过增加推理时间,这种方法让模型能够进行反思、批评、回溯和纠正,大幅提升了推理表现
11/27/2024 6:10:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
AI设计
Claude
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
Transformer
LLM
字节跳动
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构