CITE
一种多用途深度学习方法,用于CITE-seq和单细胞RNA-seq数据与细胞表面蛋白预测和插补的集成
编辑 | 萝卜皮CITE-seq 是一种单细胞多组学技术,可同时测量单细胞中 RNA 和蛋白质的表达,已广泛应用于生物医学研究,特别是免疫相关疾病和其他疾病,如流感和 COVID-19。尽管 CITE-seq 激增,但生成此类数据的成本仍然很高。尽管数据集成可以增加信息内容,但这带来了计算挑战。首先,组合多个数据集容易产生需要解决的批处理效应。其次,很难组合多个 CITE-seq 数据集,因为不同数据集中的蛋白质面板可能仅部分重叠。整合多个 CITE-seq 和单细胞 RNA 测序 (scRNA-seq) 数据集很
10/31/2022 3:30:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用