CITE
一种多用途深度学习方法,用于CITE-seq和单细胞RNA-seq数据与细胞表面蛋白预测和插补的集成
编辑 | 萝卜皮CITE-seq 是一种单细胞多组学技术,可同时测量单细胞中 RNA 和蛋白质的表达,已广泛应用于生物医学研究,特别是免疫相关疾病和其他疾病,如流感和 COVID-19。尽管 CITE-seq 激增,但生成此类数据的成本仍然很高。尽管数据集成可以增加信息内容,但这带来了计算挑战。首先,组合多个数据集容易产生需要解决的批处理效应。其次,很难组合多个 CITE-seq 数据集,因为不同数据集中的蛋白质面板可能仅部分重叠。整合多个 CITE-seq 和单细胞 RNA 测序 (scRNA-seq) 数据集很
10/31/2022 3:30:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP