Attention Mechanism
无问芯穹提出混合稀疏注意力方案MoA,加速长文本生成,实现最高8倍吞吐率提升
随着大语言模型在长文本场景下的需求不断涌现,其核心的注意力机制(Attention Mechanism)也获得了非常多的关注。 注意力机制会计算一定跨度内输入文本(令牌,Token)之间的交互,从而实现对上下文的理解。 随着应用的发展,高效处理更长输入的需求也随之增长 [1][2],这带来了计算代价的挑战:注意力高昂的计算成本和不断增长的键值缓存(KV-Cache)代价。
11/8/2024 1:12:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
马斯克
智能体
AI创作
Anthropic
英伟达
论文
AI新词
代码
训练
算法
Stable Diffusion
LLM
芯片
蛋白质
腾讯
开发者
Claude
苹果
生成式
AI for Science
Agent
神经网络
3D
机器学习
研究
xAI
生成
人形机器人
AI视频
计算
百度
Sora
GPU
华为
AI设计
工具
RAG
大语言模型
搜索
字节跳动
具身智能
大型语言模型
场景
深度学习
预测
视频生成
伟达
视觉
Transformer
AGI
架构
亚马逊
神器推荐
Copilot
特斯拉
应用
DeepMind