Align then Steer
具身VLA后训练:TeleAI提出潜空间引导的VLA跨本体泛化方法
在多模态大模型的基座上,视觉 - 语言 - 动作(Visual-Language-Action, VLA)模型使用大量机器人操作数据进行预训练,有望实现通用的具身操作能力。 然而,现有 VLA 基座模型的能力仍存在很大不足,在进行目标场景应用时需要采集数十乃至数百小时目标本体数据完成后训练(Post-Training),特别是当目标场景本体和预训练本体存在差异时,预训练和后训练阶段的动作分布出现严重失配,从而引发了 VLA 模型跨本体适配(Cross-Embodiment Adaption)挑战。 在后训练阶段通过堆叠目标本体数据对抗这种失配的边际收益迅速递减,也难以有效拟合目标场景动作分布。
9/8/2025 2:35:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP