Adam
Adam有了mini版:内存占用少一半,吞吐量提升50%
在训练大型语言模型(LLM)时,Adam(W) 基本上已经成为了人们默认使用的优化器。Adam 尽管性能优异,但使用成本很高。具体来说,Adam 需要内存来保存其优化器状态:一阶动量 m 和二阶动量 v^2。这总共需要模型大小至少 2 倍的内存。这样的内存消耗已经成为了 LLM 训练的一大主要负担。举个例子,要训练一个 7B 模型,只是 Adam 就需要每张卡有大约 56 GB 来保存 m 和 v;而如果再加上梯度,则总共需要 86 GB。即使使用最先进的 A100-80GB,成本也过高了。为了支持这样的高内存算法
7/8/2024 3:44:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
Anthropic
代码
英伟达
算法
Stable Diffusion
智能体
芯片
训练
开发者
生成式
腾讯
蛋白质
苹果
AI新词
神经网络
3D
Claude
研究
生成
LLM
机器学习
计算
Sora
AI视频
AI设计
GPU
人形机器人
AI for Science
xAI
华为
百度
搜索
大语言模型
Agent
场景
字节跳动
预测
深度学习
伟达
大型语言模型
工具
Transformer
RAG
视觉
神器推荐
具身智能
Copilot
模态
亚马逊
AGI
LLaMA
文本
算力
驾驶