4M-21
太全了!苹果上新视觉模型4M-21,搞定21种模态
当前的多模态和多任务基础模型,如 4M 或 UnifiedIO,显示出有希望的结果。然而,它们接受不同输入和执行不同任务的开箱即用能力,受到它们接受训练的模态和任务的数量(通常很少)的限制。基于此,来自洛桑联邦理工学院(EPFL)和苹果的研究者联合开发了一个任意到任意模态单一模型,该模型在数十种高度多样化的模态上进行训练,并对大规模多模态数据集和文本语料库进行协同训练。训练过程中一个关键步骤是对各种模态执行离散 tokenization,无论它们是类似图像的神经网络特征图、向量、实例分割或人体姿态等结构化数据,还是
6/25/2024 2:49:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP