在AI应用爆发式增长的今天,Spring AI 1.0版本带来了革命性的可观测性功能。本文将深入探讨如何利用Spring AI + Micrometer 构建企业级AI应用监控体系,实现成本控制、性能优化和全链路追踪。
为什么Spring AI应用急需可观测性?
AI服务成本失控的痛点
在企业级AI应用中,使用DeepSeek、OpenAI、Google Gemini或Azure OpenAI等服务时,成本控制是一个严峻挑战:
• Token消耗不透明:无法精确了解每次AI调用的成本
• 费用增长失控:大规模应用中,AI服务费用可能呈指数级增长
• 性能瓶颈难定位:AI调用链路复杂,问题排查困难
• 资源使用不合理:缺乏数据支撑的优化决策
Spring AI可观测性的价值
Spring AI的可观测性功能为这些痛点提供了完美解决方案:
• ✅ 精准Token监控:实时追踪输入/输出Token消耗,精确到每次调用
• ✅ 智能成本控制:基于使用统计制定成本优化策略
• ✅ 深度性能分析:识别AI调用瓶颈,优化响应时间
• ✅ 完整链路追踪:端到端记录请求在Spring AI应用中的完整流转
实战演练:构建可观测的Spring AI翻译应用
第一步:Spring AI项目初始化
在start.spring.io[1]创建Spring Boot项目,集成Spring AI核心依赖:
Maven依赖配置(Spring AI BOM管理):
复制<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bom</artifactId>
<version>1.0.0</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<!-- Spring AI DeepSeek 集成 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-deepseek</artifactId>
</dependency>
<!-- Spring Boot Web -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- Spring Boot Actuator 监控 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
</dependencies>第二步:Spring AI客户端配置
主应用类配置:
复制@SpringBootApplication
publicclassSpringAiTranslationApplication {
publicstaticvoidmain(String[] args) {
SpringApplication.run(SpringAiTranslationApplication.class, args);
}
@Bean
public ChatClient chatClient(ChatClient.Builder builder) {
return builder.build();
}
}Spring AI配置文件:
复制# Spring AI 可观测性配置
management:
endpoints:
web:
exposure:
include:"*"
endpoint:
health:
show-details:always
metrics:
export:
prometheus:
enabled:true
spring:
threads:
virtual:
enabled:true
ai:
deepseek:
api-key:${DEEPSEEK_API_KEY}
chat:
options:
model:deepseek-chat
temperature: 0.8环境变量设置:
复制export DEEPSEEK_API_KEY=your-deepseek-api-key
第三步:构建Spring AI翻译服务
智能翻译控制器:
复制@RestController
@RequestMapping("/api/v1")
@RequiredArgsConstructor
@Slf4j
publicclassSpringAiTranslationController {
privatefinal ChatModel chatModel;
@PostMapping("/translate")
public TranslationResponse translate(@RequestBody TranslationRequest request) {
log.info("Spring AI翻译请求: {} -> {}", request.getSourceLanguage(), request.getTargetLanguage());
Stringprompt= String.format(
"作为专业翻译助手,请将以下%s文本翻译成%s,保持原文的语气和风格:\n%s",
request.getSourceLanguage(),
request.getTargetLanguage(),
request.getText()
);
StringtranslatedText= chatModel.call(prompt);
return TranslationResponse.builder()
.originalText(request.getText())
.translatedText(translatedText)
.sourceLanguage(request.getSourceLanguage())
.targetLanguage(request.getTargetLanguage())
.timestamp(System.currentTimeMillis())
.build();
}
}
@Data
@Builder
classTranslationRequest {
private String text;
private String sourceLanguage;
private String targetLanguage;
}
@Data
@Builder
classTranslationResponse {
private String originalText;
private String translatedText;
private String sourceLanguage;
private String targetLanguage;
private Long timestamp;
}第四步:Spring AI翻译API测试
复制curl -X POST http://localhost:8080/api/v1/translate \
-H "Content-Type: application/json" \
-d '{
"text": "Spring AI makes AI integration incredibly simple and powerful",
"sourceLanguage": "英语",
"targetLanguage": "中文"
}'
# 响应示例
{
"originalText": "Spring AI makes AI integration incredibly simple and powerful",
"translatedText": "Spring AI让AI集成变得极其简单而强大",
"sourceLanguage": "英语",
"targetLanguage": "中文",
"timestamp": 1704067200000
}Spring AI监控指标深度解析
核心指标1:Spring AI操作性能监控
指标端点:/actuator/metrics/spring.ai.chat.client.operation
复制{
"name":"spring.ai.chat.client.operation",
"description":"Spring AI ChatClient操作性能指标",
"baseUnit":"seconds",
"measurements":[
{
"statistic":"COUNT",
"value":15
},
{
"statistic":"TOTAL_TIME",
"value":8.456780293
},
{
"statistic":"MAX",
"value":2.123904083
}
],
"availableTags":[
{
"tag":"gen_ai.operation.name",
"values":["framework"]
},
{
"tag":"spring.ai.kind",
"values":["chat_client"]
}
]
}业务价值:
• 监控Spring AI翻译服务调用频次
• 分析Spring AI响应时间分布
• 识别Spring AI性能瓶颈
核心指标2:Spring AI Token使用量精准追踪
指标端点:/actuator/metrics/gen_ai.client.token.usage
复制{
"name":"gen_ai.client.token.usage",
"description":"Spring AI Token使用量统计",
"measurements":[
{
"statistic":"COUNT",
"value":1250
}
],
"availableTags":[
{
"tag":"gen_ai.response.model",
"values":["deepseek-chat"]
},
{
"tag":"gen_ai.request.model",
"values":["deepseek-chat"]
},
{
"tag":"gen_ai.token.type",
"values":[
"output",
"input",
"total"
]
}
]
}成本控制价值:
• 精确计算Spring AI服务成本
• 优化Prompt设计降低Token消耗
• 制定基于使用量的预算策略
Spring AI调用链路追踪实战
第一步:集成Zipkin追踪
添加Spring AI追踪依赖:
复制<dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-tracing-bridge-brave</artifactId> </dependency> <dependency> <groupId>io.zipkin.reporter2</groupId> <artifactId>zipkin-reporter-brave</artifactId> </dependency>
第二步:启动Zipkin服务
复制docker run -d \ --name zipkin-spring-ai \ -p 9411:9411 \ -e STORAGE_TYPE=mem \ openzipkin/zipkin:latest
第三步:Spring AI追踪配置
复制management:
zipkin:
tracing:
endpoint: http://localhost:9411/api/v2/spans
tracing:
sampling:
probability: 1.0Spring AI链路追踪效果展示
Zipkin界面展示Spring AI调用链路:
Spring AI调用链路总览
Spring AI详细调用时序:
Spring AI调用时序分析
通过Zipkin可以清晰看到:
• Spring AI ChatClient的调用耗时
• DeepSeek API的响应时间
• 完整的Spring AI请求链路
Spring AI Observations源码架构解析
Spring AI可观测性核心流程:
Spring AI Observations架构图
Spring AI的可观测性基于以下核心组件:
1. ChatClientObservationConvention:定义Spring AI观测约定
2. ChatClientObservationContext:Spring AI观测上下文
3. MicrometerObservationRegistry:指标注册中心
4. TracingObservationHandler:链路追踪处理器
引用链接
[1] start.spring.io: https://start.spring.io