AI在线 AI在线

2021入坑机器学习,有这份指南就够了

这是一份适用于小白的机器学习超丰富资源指南。机器学习社区社交媒体上经常有人提出这样的问题:我如何开始机器学习?我如何免费学习?什么是人工智能?我怎样才能学会它?人工智能是如何工作的?我该从何学起?如果我没有开发人员背景,该如何开始?......面对这些问题,油管博主 What's AI——Louis Bouchard 撰写了一份关于「如何在 2021 年零基础开始机器学习」的完整指南,整合了大量学习资源,而且大部分是免费的。项目地址: 1.6K star 量,并且仍在持续更新中。我们来看一下这份指南的具体内容。1.

这是一份适用于小白的机器学习超丰富资源指南。

机器学习社区社交媒体上经常有人提出这样的问题:

我如何开始机器学习?

我如何免费学习?

什么是人工智能?我怎样才能学会它?

人工智能是如何工作的?我该从何学起?

如果我没有开发人员背景,该如何开始?

......

面对这些问题,油管博主 What's AI——Louis Bouchard 撰写了一份关于「如何在 2021 年零基础开始机器学习」的完整指南,整合了大量学习资源,而且大部分是免费的。

2021入坑机器学习,有这份指南就够了

项目地址:https://github.com/louisfb01/start-machine-learning

该资源现已获得 1.6K star 量,并且仍在持续更新中。我们来看一下这份指南的具体内容。

2021入坑机器学习,有这份指南就够了

1. 首先 Bouchard 列出了一些初步了解机器学习领域及其术语的视频,并整理好了 免费链接,包括 What's AI 的 Learn the basics in a minute、Welch Labs 的 Neural Networks Demystified 和 3Blue1Brown 的 Neural networks。

2021入坑机器学习,有这份指南就够了

Welch Labs 的 Neural Networks Demystified

2. 第二部分 Bouchard 进一步列出了一些更系统的机器学习入门课程,包括 AI 大牛吴恩达的斯坦福 CS229。

2021入坑机器学习,有这份指南就够了

3. 阅读一些优秀的线上文章,线上文章大多是被多次浏览的,优秀的技术文章能够脱颖而出说明它们受到许多人认可。目前 Bouchard 列出的文章包括:

2021入坑机器学习,有这份指南就够了

4. 除了文章,一些体系完整的书籍也是可以阅读学习的,Bouchard 给大家整理了一些书目的在线版:

2021入坑机器学习,有这份指南就够了

5. 入门机器学习没有相关的数学知识怎么办?这让许多初学者望而却步。在这份指南中,Bouchard 给大家推荐了可汗学院的 3 门数学课程:线性代数、统计与概率、多元微积分。此外,他还推荐了一些与数学相关的书和视频,供大家进行更结构化的学习。

2021入坑机器学习,有这份指南就够了

可汗学院的线性代数线上课程。

6. 除了数学基础,一些跨专业学习的初学者可能缺乏编程的基础知识。Bouchard 主要为大家整理了一些学习 Python 的课程资源:

2021入坑机器学习,有这份指南就够了

7. 与其他领域一样,名校以及领域内大牛的课程是含金量非常高的,例如图灵奖得主 Yann LeCun、吴恩达等都有自己的线上课程,Bouchard 的指南中目前整理了如下内容

2021入坑机器学习,有这份指南就够了

8. 掌握理论知识后,实践也是非常重要的。Bouchard 在指南中推荐了数据建模和数据分析竞赛平台 Kaggle,在 Kaggle 上完成相应题目的编码和测试是机器学习社区常见的实践学习方式。

2021入坑机器学习,有这份指南就够了

Kaggle 平台地址:https://www.kaggle.com/

9. 此外,Bouchard 还为大家整理了一些提供领域新闻和资讯的社区平台或网站。借助这些平台,研究者们能够查阅最新的研究进展和论文等,包括 reddit、Medium 等。

2021入坑机器学习,有这份指南就够了

最后,Bouchard 整理了 AI 领域目前面临的重要问题——伦理道德与可信 AI 的相关信息,还在个人博客中总结了一些机器学习工作面试的小技巧:https://www.louisbouchard.ai/learnai/#how-to-find-a-job

2021入坑机器学习,有这份指南就够了

如此完备的机器学习入门指南,感兴趣的同学快去查看原项目的丰富资源吧

相关资讯

谷歌大脑深度学习调参(炼丹)指南出炉,Hinton点赞,一天收获1500星

「大量的实践经验已被提炼成这份强大的深度学习模型调参指南。」——Geoffrey Hinton。
1/21/2023 10:59:00 AM
机器之心

ScienceAI 2021「AI+材料」专题年度回顾

编辑/凯霞传统的材料设计与研发,以实验和经验为主。但随着材料化学和加工变得越来越复杂,这变得越来越具有挑战性。随着人工智能(AI)的快速发展,AI 技术已广泛应用于材料科学各领域。科学家正努力通过计算机建模和 AI 技术,根据所需要的性能预测候选材料,从而加快新材料的研发速度和效率,降低研发成本。AI 正在加速搜索和预测材料特性。在 AI 的助力下,材料在极端、恶劣条件下的性能得到快速且准确的预测,实现了人类目前无法实现的......利用 AI 技术来加速设计和发现尚不存在的材料。这些先进的材料将使技术更先进和更环
1/6/2022 2:30:00 PM
ScienceAI

即刻下载!威立最新AI调研报告ExplanAItions 2025:科研人员AI使用率大幅跃升,但仍需更多权威指南

今年2月,威立发布了基于对近5000名科研人员进行调研的研究报告ExplanAItions。 时隔半年,依托新一轮调研中由全球2430位科研人员反馈的最新数据,威立重磅推出ExplanAItions 2025。 ,科研人员对人工智能仍持乐观态度,其中85%的受访者认为AI提升了他们的工作效率,近四分之三的受访者表示AI既增加了工作产出也提升了工作质量。
11/13/2025 1:51:00 PM
ScienceAI