构建机器学习模型是数据科学的关键环节,涉及运用算法进行数据预测或挖掘数据中的模式。
本文分享一系列简洁的代码片段,涵盖机器学习过程的各个阶段,从数据准备、模型选择,到模型评估和超参数调优。这些代码示例能帮助你使用诸如Scikit-Learn、XGBoost、CatBoost、LightGBM等库,完成常见的机器学习任务,还包含使用Hyperopt进行超参数优化、利用SHAP值进行模型解释等高级技术。
借助这些快速参考代码,你可以简化机器学习工作流程,在不同领域开发出高效的预测模型。
一、数据处理与探索
- 加载数据集:data = pd.read_csv('dataset.csv')
- 探索数据:data.head()、data.info()、data.describe()
- 处理缺失值:data.dropna()、data.fillna()
- 编码分类变量:pd.get_dummies(data)
- 将数据拆分为训练集和测试集:X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- 特征缩放:scaler = StandardScaler(),X_scaled = scaler.fit_transform(X)
二、模型初始化、训练与评估
- 初始化模型:model = RandomForestClassifier()
- 训练模型:model.fit(X_train, y_train)
- 进行预测:predictions = model.predict(X_test)
- 评估准确率:accuracy_score(y_test, predictions)
- 混淆矩阵:conf_matrix = confusion_matrix(y_test, predictions)
- 分类报告:class_report = classification_report(y_test, predictions)
- 交叉验证:cv_scores = cross_val_score(model, X, y, cv=5)
- 超参数调优:grid_search = GridSearchCV(model, param_grid, cv=5),grid_search.fit(X, y)
- 特征重要性:feature_importance = model.feature_importances_
- 保存模型:joblib.dump(model,'model.pkl')
- 加载模型:loaded_model = joblib.load('model.pkl')
三、降维和聚类
- 主成分分析:pca = PCA(n_components=2),X_pca = pca.fit_transform(X)
- 降维:pca = PCA(n_components=2),X_pca = pca.fit_transform(X)
- K均值聚类:kmeans = KMeans(n_clusters=3),kmeans.fit(X),labels = kmeans.labels_
- 手肘法:Sum_of_squared_distances = [],for k in range(1,11): kmeans = KMeans(n_clusters=k),kmeans.fit(X),Sum_of_squared_distances.append(kmeans.inertia_)
- 轮廓系数:silhouette_avg = silhouette_score(X, labels)
四、各类分类模型
- 决策树:dt_model = DecisionTreeClassifier(),dt_model.fit(X_train, y_train)
- 支持向量机:svm_model = SVC(),svm_model.fit(X_train, y_train)
- 朴素贝叶斯:nb_model = GaussianNB(),nb_model.fit(X_train, y_train)
- K近邻分类:knn_model = KNeighborsClassifier(),knn_model.fit(X_train, y_train)
- 近邻回归:KNeighborsRegressor(n_neighbors=5).fit(X_train, y_train)
- 逻辑回归:logreg_model = LogisticRegression(),logreg_model.fit(X_train, y_train)
- 岭回归:ridge_model = Ridge(),ridge_model.fit(X_train, y_train)
- 套索回归:lasso_model = Lasso(),lasso_model.fit(X_train, y_train)
- 集成方法:ensemble_model = VotingClassifier(estimators=[('clf1', clf1), ('clf2', clf2)], voting='soft'),ensemble_model.fit(X_train, y_train)
- 装袋法:bagging_model = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=100),bagging_model.fit(X_train, y_train)
- 随机森林:rf_model = RandomForestClassifier(n_estimators=100),rf_model.fit(X_train, y_train)
- 梯度提升:gb_model = GradientBoostingClassifier(),gb_model.fit(X_train, y_train)
- AdaBoost:adaboost_model = AdaBoostClassifier(),adaboost_model.fit(X_train, y_train)
- XGBoost:xgb_model = xgb.XGBClassifier(),xgb_model.fit(X_train, y_train)
- LightGBM:lgb_model = lgb.LGBMClassifier(),lgb_model.fit(X_train, y_train)
- CatBoost:catboost_model = CatBoostClassifier(),catboost_model.fit(X_train, y_train)
五、模型评估指标
- ROC曲线:fpr, tpr, thresholds = roc_curve(y_test, predictions_prob[:,1])
- ROC曲线下面积:roc_auc = roc_auc_score(y_test, predictions_prob[:,1])
- 精确率 - 召回率曲线:precision, recall, thresholds = precision_recall_curve(y_test, predictions_prob[:,1])
- 精确率 - 召回率曲线下面积:pr_auc = auc(recall, precision)
- F1分数:f1 = f1_score(y_test, predictions)
- 受试者工作特征曲线AUC:roc_auc = roc_auc_score(y_test, predictions_prob[:,1])
- 均方误差:mse = mean_squared_error(y_test, predictions)
- 决定系数(R²):r2 = r2_score(y_test, predictions)
六、交叉验证和采样技术
- 分层采样:stratified_kfold = StratifiedKFold(n_splits=5)
- 时间序列分割:time_series_split = TimeSeriesSplit(n_splits=5)
- 重采样(欠采样):rus = RandomUnderSampler(),X_resampled, y_resampled = rus.fit_resample(X, y)
- 重采样(过采样):ros = RandomOverSampler(),X_resampled, y_resampled = ros.fit_resample(X, y)
- SMOTE(合成少数过采样技术):smote = SMOTE(),X_resampled, y_resampled = smote.fit_resample(X, y)
- 类别权重:class_weight='balanced'
- 交叉验证中的分层采样:stratified_cv = StratifiedKFold(n_splits=5)
七、特征工程与转换
- 学习曲线:plot_learning_curve(model, X, y)
- 验证曲线:plot_validation_curve(model, X, y, param_name='param', param_range=param_range)
- 提前停止(以XGBoost为例):early_stopping_rounds=10
- 特征缩放:scaler = MinMaxScaler(feature_range=(0, 1)),X_scaled = scaler.fit_transform(X)
- 独热编码:data_encoded = pd.get_dummies(data)
- 标签编码:label_encoder = LabelEncoder(),data['label_encoded'] = label_encoder.fit_transform(data['label'])
- 数据归一化:scaler = StandardScaler(),X_normalized = scaler.fit_transform(X)
- 数据标准化:scaler = MinMaxScaler(),X_standardized = scaler.fit_transform(X)
- 数据变换:X_transformed = np.log1p(data)
- 异常值检测:iso_forest = IsolationForest(),outliers = iso_forest.fit_predict(X)
- 异常检测:envelope = EllipticEnvelope(contamination=0.01),outliers = envelope.fit_predict(X)
- 数据插补:imputer = SimpleImputer(strategy='mean'),X_imputed = imputer.fit_transform(X)
- 多项式回归:poly = PolynomialFeatures(degree=2),X_poly = poly.fit_transform(X)
八、回归模型与技术
- L1正则化:lasso = Lasso(alpha=1.0),lasso.fit(X_train, y_train)
- L2正则化:ridge = Ridge(alpha=1.0),ridge.fit(X_train, y_train)
- Huber回归:huber = HuberRegressor(),huber.fit(X_train, y_train)
- 分位数回归:quantile_reg = QuantReg(y_train, X_train),quantile_result = quantile_reg.fit(q=0.5)
- 稳健回归:ransac = RANSACRegressor(),ransac.fit(X_train, y_train)
九、自动化机器学习和高级技术
- 使用TPOT进行自动化机器学习:tpot = TPOTClassifier(),tpot.fit(X_train, y_train)
- 使用H2O进行自动化机器学习:h2o_automl = H2OAutoML(max_models=10, seed=1),h2o_automl.train(x=X_train.columns, y='target', training_frame=train)
十、绘图与可视化
- 保存绘图:plt.savefig('plot.png')
- 绘制特征重要性图:plot_feature_importance(model)
- K均值聚类可视化:plt.scatter(X[:, 0], X[:, 1], c=KMeans(n_clusters=3).fit_predict(X), cmap='viridis')
十一、其他
- 交叉验证预测:cv_predictions = cross_val_predict(model, X, y, cv=5)
- 自定义评估指标:custom_metric = custom_metric(y_true, y_pred)
- 使用scikit-learn进行特征选择:kbest = SelectKBest(chi2, k=5),X_selected = kbest.fit_transform(X, y)
- 带交叉验证的递归特征消除:rfecv = RFECV(estimator=DecisionTreeClassifier(), step=1, cv=5),X_rfecv = rfecv.fit_transform(X, y)
- 多项式回归次数:poly = PolynomialFeatures(degree=2),X_poly = poly.fit_transform(X)
- 处理类别不平衡问题:class_weight='balanced'
- AdaBoost中的学习率:learning_rate=0.1
- 用于确保可重复性的随机种子:random_state=42
- 岭回归的alpha参数:ridge = Ridge(alpha=1.0),ridge.fit(X_train, y_train)
- 套索回归的alpha参数:lasso = Lasso(alpha=1.0),lasso.fit(X_train, y_train)
- 决策树的最大深度:dt_model = DecisionTreeClassifier(max_depth=3),dt_model.fit(X_train, y_train)
- K近邻的参数:knn_model = KNeighborsClassifier(n_neighbors=5),knn_model.fit(X_train, y_train)
- 支持向量机的核参数:svm_model = SVC(kernel='rbf'),svm_model.fit(X_train, y_train)
- 随机森林的估计器数量:rf_model = RandomForestClassifier(n_estimators=100),rf_model.fit(X_train, y_train)
- 梯度提升的学习率:gb_model = GradientBoostingClassifier(learning_rate=0.1),gb_model.fit(X_train, y_train)
- 使用网格搜索的Huber回归:GridSearchCV(HuberRegressor(), {'epsilon': [1.1, 1.2, 1.3]}, cv=5).fit(X_train, y_train)
- 带交叉验证的岭回归:RidgeCV(alphas=[0.1, 1.0, 10.0], cv=5).fit(X_train, y_train)
- 模型堆叠:stacked_model = StackingClassifier(classifiers=[clf1, clf2], meta_classifier=meta_clf),stacked_model.fit(X_train, y_train)