ZSL
零样本 | ZeroDiff:扩散模型助力零样本学习,打破数据限制,实现高效泛化
一眼概览ZeroDiff 提出了一种基于扩散模型的生成式零样本学习(ZSL)方法,提升数据利用效率,实现类别级和实例级的增强。 在多个ZSL基准数据集上,ZeroDiff 取得了显著的性能提升,特别是在数据稀缺情况下仍保持稳健。 核心问题零样本学习(ZSL)试图在无训练样本的情况下识别新类别,主要依赖于已知类别的语义信息。
2/6/2025 11:25:50 AM
萍哥学AI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind