ZSL
零样本 | ZeroDiff:扩散模型助力零样本学习,打破数据限制,实现高效泛化
一眼概览ZeroDiff 提出了一种基于扩散模型的生成式零样本学习(ZSL)方法,提升数据利用效率,实现类别级和实例级的增强。 在多个ZSL基准数据集上,ZeroDiff 取得了显著的性能提升,特别是在数据稀缺情况下仍保持稳健。 核心问题零样本学习(ZSL)试图在无训练样本的情况下识别新类别,主要依赖于已知类别的语义信息。
2/6/2025 11:25:50 AM
萍哥学AI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP