优化
量子计算新进展,腾讯量子实验室设计新算法进行量子近似优化
编辑 | 白菜叶组合优化问题普遍存在,并且通常在计算上很难解决。量子近似优化算法(QAOA)是最具代表性的量子经典混合算法之一,旨在通过将离散优化问题转化为连续电路参数上的经典优化问题来解决组合优化问题。QAOA 目标景观因普遍存在局部最小值而臭名昭著,其可行性很大程度上依赖于经典优化器的功效。在最新的研究中,腾讯量子实验室(Tencent Quantum Laboratory)的研究人员为 QAOA 设计了 double adaptive-region Bayesian optimization(DARBO)。测
3/11/2024 6:21:00 PM
ScienceAI
基于Transformer和注意力的可解释核苷酸语言模型,用于pegRNA优化设计
编辑 | 紫罗基因编辑是一种新兴的、比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。先导编辑(Prime editor, PE)是美籍华裔科学家刘如谦(David R.Liu)团队开发的精准基因编辑系统,PE 是一种很有前途的基因编辑工具,但由于缺乏准确和广泛适用的方法,有效优化先导编辑 RNA(prime editing guide RNA, pegRNA)设计仍然是一个挑战。近日,来自重庆医科大学、西北农林科技大学、云南民族大学、浙江大学医学院和中国科学院数学与系统科学研究院生物信息学中心(B
10/30/2023 6:54:00 PM
ScienceAI
谷歌下场优化扩散模型,三星手机运行Stable Diffusion,12秒内出图
Speed Is All You Need:谷歌提出针对 Stable Diffusion 一些优化建议,生成图片速度快速提升。Stable Diffusion 在图像生成领域的知名度不亚于对话大模型中的 ChatGPT。其能够在几十秒内为任何给定的输入文本创建逼真图像。由于 Stable Diffusion 的参数量超过 10 亿,并且由于设备上的计算和内存资源有限,因而这种模型主要运行在云端。在没有精心设计和实施的情况下,在设备上运行这些模型可能会导致延迟增加,这是由于迭代降噪过程和内存消耗过多造成的。如何在设
4/27/2023 2:25:00 PM
机器之心
AI自动化系统可以快速找到新的电池化学成分,比人工测试要快得多
编辑 | 萝卜皮开发高能高效电池技术是推进交通和航空电气化的关键方面。然而,电池创新可能需要数年时间才能实现。在非水电池电解质溶液的情况下,选择多种溶剂、盐及其相对比例的许多设计变量使得电解质优化既费时又费力。为了克服这些问题,卡内基梅隆大学(Carnegie Mellon University)的研究团队提出了一种实验设计,将机器人技术(一个名为「Clio」的定制自动化实验)与机器学习(一个名为「Dragonfly」的基于贝叶斯优化的实验计划器)结合起来。在单盐和三元溶剂设计空间内对电解质电导率进行自主优化,在两
10/13/2022 6:57:00 PM
ScienceAI
墨芯首席科学家严恩勖:为什么说稀疏化是AI计算的未来
主讲人:严恩勖墨芯人工智能联合创始人 & 首席科学家卡内基梅隆大学 机器学习博士神经网络动态稀疏算法发明者视频简介:10年前,AI计算优化大多着重在优化算法的计算复杂度上,近年来随着AI产业化,AI计算优化更多注重在硬件的算力提升上。当前,硬件所能带来的算力提升已逼近极限,AI优化计算的未来将是算法与硬件架构的协同优化,以及构建相应的软件生态。稀疏化计算,带来数量级的算力提升,将成为未来AI计算优化的领航者。视频内容:
7/18/2022 5:04:00 PM
墨芯人工智能
CVPR 2022 | 联邦学习审计隐私新手段,田纳西大学等提出生成式梯度泄露方法GGL
本文提出一种利用生成模型作为图片先验的梯度攻击方法GGL,由来自美国田纳西大学,美国橡树岭国家实验室,和谷歌共同完成,论文已被 CVPR 2022 接收。
4/10/2022 12:45:00 PM
机器之心
可微分骨架树:基于梯度的分子优化算法
这周我们简单介绍一个高效分子优化的方法。该工作由UIUC的Jimeng Sun组合MIT的Connor Coley组合作完成,对应的文章题目是Differentiable Scaffolding Tree for Molecule Optimization[1],被2022年ICLR接受,主要的代码和数据发布在。内容:思路:基于梯度的分子优化分子的可微分骨架树类梯度上升的优化算法优化效果测试由可微性得到的可解释性思路:基于梯度的分子优化在药物发现中,分子优化,即找到具有理想性质的分子结构,是核心的一步。由于化学结构
2/21/2022 11:58:00 AM
新闻助手
使用深度学习,通过一个片段修饰进行分子优化
编辑 | 萝卜皮分子优化是药物开发中的关键步骤,可通过化学修饰改善候选药物的预期特性。来自俄亥俄州立大学(The Ohio State University)的研究人员,在分子图上开发了一种新颖的深度生成模型 Modof,用于分子优化。Modof 通过预测分子处的单个断开位点以及在该位点去除和/或添加片段来修饰给定的分子。在 Modof-pipe 中实现了多个相同 Modof 模型的管道,以修改多个断开位置的输入分子。研究人员表明 Modof-pipe 能够保留主要的分子支架,允许控制中间优化步骤并更好地约束分子相
1/17/2022 2:46:00 PM
ScienceAI
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
Gemini
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind