StepLaw
百万成本揭秘LLM训练黄金法则,阶跃星辰推出全领域适用的超参数优化工具
在人工智能的激烈竞争中,一场耗资百万美元的大规模实验正悄然改变着大语言模型的训练方式。 阶跃星辰研究团队日前发布重磅研究成果,他们通过耗费近100万NVIDIA H800GPU小时的算力,从零开始训练了3,700个不同规模的模型,累计训练了惊人的100万亿个token,揭示出一条被称为"Step Law"的普适性缩放规律,为大语言模型的高效训练提供了全新指南。 这项研究不仅仅是对超参数优化的探索,更是第一个全面考察模型最优超参在不同形状、稀疏度和数据分布下稳定性的工作。
3/13/2025 3:41:00 PM
AI在线
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
Gemini
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind