思维链(CoT)
「think step by step」还不够,让模型「think more steps」更有用
本文对思维链的推理步长进行了控制变量实验,发现推理步长和答案的准确性是线性相关的,这种影响机制甚至超越了问题本身所产生的差异。如今,大型语言模型(LLM)及其高级提示策略的出现,标志着对语言模型的研究取得了重大进展,尤其是在经典的 NLP 任务中。这其中一个关键的创新是思维链(CoT)提示技术,该技术因其在多步骤问题解决中的能力而闻名。这项技术遵循了人类的顺序推理,在各种挑战中表现出了优秀的性能,其中包括跨域、长泛化和跨语言的任务。CoT 及其富有逻辑的、循序渐进的推理方法,在复杂的问题解决场景中提供了至关重要的可
1/25/2024 3:07:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
模型
数据
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind