时间序列分析
字节跳动研究开源 ChatTS-14B:原生理解并随着时间的推移进行推理
字节跳动研究团队宣布开源 ChatTS-14B,这是一款专为时间序列数据理解和推理设计的140亿参数大型语言模型(LLM)。 以 Apache2.0许可协议发布,ChatTS-14B 的开源引发了 AI 社区的广泛关注,被认为是时间序列分析与生成式 AI 结合的重大进展。 ChatTS-14B:时间序列的智能对话引擎ChatTS-14B 基于 Qwen2.5-14B-Instruct 模型进行微调,专为处理时间序列数据而设计,能够理解和推理复杂的时序数据模式。
4/21/2025 10:00:57 AM
AI在线
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
在时间序列分析领域中,数据缺失是一个不可避免的挑战。 无论是由于传感器故障、数据传输中断还是设备维护等原因,这些缺失都会对数据分析和预测造成显著影响。 传统的处理方法,如前向填充或简单插值,虽然实现简单,但在处理复杂数据时往往表现不足。
12/16/2024 1:15:15 PM
Sara Nóbrega
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉