RoPE
DeepSeek的MLA架构:大模型迁移的新突破
在人工智能领域,DeepSeek-R1的推出引发了广泛关注,这一创新代表了 AI 产业的颠覆性进展。 其多头潜在注意力网络(Multi-head Latent Attention,MLA)架构,借助低秩压缩技术显著降低了训练与推理的成本,甚至仅为同等性能大模型的十分之一。 这一成果由复旦大学 NLP 实验室的博士后纪焘及其团队共同完成,目标是让任意预训练的大语言模型能够快速迁移到 MLA 架构,而无需重新从头开始训练。
3/7/2025 10:52:00 AM
AI在线
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
马斯克
智能体
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
苹果
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
生成
人形机器人
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
MCP