Multi-Token
Multi-Token突破注意力机制瓶颈,Meta发明了一种很新的Transformer
当上下文包含大量 Token 时,如何在忽略干扰因素的同时关注到相关部分,是一个至关重要的问题。 然而,大量研究表明,标准注意力在这种情况下可能会出现性能不佳的问题。 标准多头注意力的工作原理是使用点积比较当前查询向量与上下文 Token 对应的键向量的相似性。
4/4/2025 6:23:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
Gemini
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind