Key-Value
SCOPE:面向大语言模型长序列生成的双阶段KV缓存优化框架
Key-Value (KV)缓存已成为大语言模型(LLM)长文本处理的关键性能瓶颈。 当前研究尚未充分关注解码阶段的优化,这一阶段具有同等重要性,因为:1、对需要完整上下文的场景,预填充阶段的过度压缩会显著降低模型的推理理解能力2、在长输出推理任务中存在重要特征的显著偏移现象这篇论文提出SCOPE框架,通过分离预填充与解码阶段的KV缓存优化策略,实现高效的缓存管理。 该框架保留预填充阶段的关键KV缓存信息,同时引入基于滑动窗口的新型策略,用于解码阶段重要特征的高效选取。
12/30/2024 1:13:35 PM
SACHIN KUMAR
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
数据
机器人
大模型
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
论文
代码
LLM
算法
Stable Diffusion
芯片
腾讯
苹果
AI for Science
Claude
Agent
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
研究
人形机器人
生成
AI视频
百度
工具
RAG
大语言模型
Sora
华为
GPU
计算
具身智能
AI设计
字节跳动
搜索
大型语言模型
AGI
场景
深度学习
视频生成
架构
预测
视觉
DeepMind
伟达
Transformer
编程
神器推荐
AI模型
亚马逊
MCP