公平性
谷歌悄然删去人工智能团队网页中的 “多样性” 和 “公平性” 表述
近日,谷歌对其 “负责任的人工智能与人本技术(RAI-HCT)” 团队的官方网站进行了更新,令人关注的是,该网页上与 “多样性” 和 “公平性” 相关的表述被悄然删除。 之前,该网页使用了诸如 “边缘化社区”“多样化的”“代表性不足的群体” 以及 “公平性” 等词汇,来描述该团队在人工智能安全性、公平性和可解释性方面的工作。 经过此次更新,这些描述性的词汇被删去,取而代之的是一些更为模糊的词语,比如用 “所有的”“多样的” 和 “众多的” 来代替 “多样化的” 表述。
3/9/2025 11:12:00 AM
AI在线
CVPR 2024|FairCLIP:首个多模态医疗视觉语言大模型公平性研究
作者 | 哈佛大学、纽约大学团队编辑 | ScienceAI公平性在深度学习中是一个关键问题,尤其是在医疗领域,这些模型影响着诊断和治疗决策。尽管在仅限视觉领域已对公平性进行了研究,但由于缺乏用于研究公平性的医疗视觉-语言(VL)数据集,医疗VL模型的公平性仍未被探索。为了弥补这一研究空白,我们介绍了第一个公平的视觉-语言医疗数据集(FairVLMed),它提供了详细的人口统计属性、真实标签和临床笔记,以便深入检查VL基础模型中的公平性。使用FairVLMed,我们对两个广泛使用的VL模型(CLIP和BLIP2)进
4/8/2024 2:18:00 PM
ScienceAI
ICLR2024 | Harvard FairSeg: 第一个研究分割算法公平性的大型医疗分割数据集
作者 | 田宇编辑 | 白菜叶近年来,人工智能模型的公平性问题受到了越来越多的关注,尤其是在医学领域,因为医学模型的公平性对人们的健康和生命至关重要。高质量的医学公平性数据集对促进公平学习研究非常必要。现有的医学公平性数据集都是针对分类任务的,而没有可用于医学分割的公平性数据集,但是医学分割与分类一样都是非常重要的医学 AI 任务,在某些场景分割甚至优于分类,因为它能够提供待临床医生评估的器官异常的详细空间信息。在最新的研究中,哈佛大学(Harvard University)的Harvard-Ophthalmolo
1/23/2024 6:10:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用