CONFDIFF
填补AlphaFold3空白,字节跳动提出物理引导的方法让蛋白质动起来
世界是变化的,分子是运动的,从预测静态单一结构走向动态构象分布是揭示蛋白质等生物分子功能的重要一步。探索蛋白质的构象分布,能帮助理解蛋白质与其他分子相互作用的生物过程;识别蛋白质表面下的潜在药物位点,描绘各个亚稳态之间的过渡路径,有助于研究人员设计出具有更强特异性和效力的目标抑制剂和治疗药物。但传统的分子动力学模拟方法昂贵且耗时,难以跨越长的时间尺度,从而观察到重要的生物过程。近年来的深度学习蛋白质结构预测模型在这个问题上也同样碰壁,往往只能预测静态单一结构,包括最近再次登上 Nature 的 AlphaFold
5/29/2024 3:18:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
AI模型