残基
准确预测蛋白质功能新SOTA,中南大学推出全新深度学习模型,登Nature子刊
编辑丨&预测蛋白质功能的计算方法对于理解生物学机制和治疗复杂疾病具有重要意义。 然而,现有的预测计算方法缺乏可解释性,难以理解蛋白质结构和功能之间的关系。 在研究中,来自中南大学的团队提出了一种基于深度学习的解决方案,名为 DPFunc,用于使用域引导的结构信息进行准确的蛋白质功能预测。
1/8/2025 6:19:00 PM
ScienceAI
Nature子刊,川大团队机器学习结合MD,预测蛋白质变构,助力药物研发
编辑 | 萝卜皮变构药物为现代药物设计提供了一条新途径。然而,识别隐蔽的变构位点是一项艰巨的挑战。四川大学蒲雪梅教授、邵振华研究员团队提出了一种先进的计算流程,结合残基驱动的混合机器学习模型(RHML)和分子动力学(MD)模拟,成功识别出了变构位点、变构调节剂,并揭示了它们的调控机制。具体而言,在 β2 肾上腺素能受体(β2AR)中,团队发现了位于残基 D79^2.50、F282^6.44、N318^7.45和S319^7.46 附近的一个新的变构位点及潜在调节剂 ZINC5042。通过分子力学/广义 Born 表
9/25/2024 4:22:00 PM
ScienceAI
精确预测相分离蛋白质,同济&中国科学院机器学习预测器PSPire
编辑 | 萝卜皮对蛋白质相分离(PS)的理解的迅速发展带来了丰富的生物信息学工具来预测相分离蛋白质(PSP)。这些工具通常偏向于具有大量本质无序区域 (IDR) 的 PSP,因此经常低估没有 IDR 的潜在 PSP。并且,PS 不仅受 IDR 控制,还受结构化模块结构域以及不直接反映在氨基酸序列的其他相互作用影响。在最新的研究中,同济大学和中国科学院的研究团队开发了 PSPIre,一种机器学习预测器,它结合了残基级和结构级特征,用于精确预测 PSP。与当前的 PSP 预测因子相比,PSPire 在识别没有 IDR
3/22/2024 5:00:00 PM
ScienceAI
用基于结构的突变偏好进行蛋白质设计,加州大学、MIT、哈佛医学院团队开发了一种无监督方法
编辑 | 萝卜皮当前最新的蛋白质设计方法,往往依赖于具有多达数百个数百万个参数的大型神经网络,同时并不清楚哪些残基依赖性对于确定蛋白质功能至关重要。加州大学(University of California)、麻省理工学院(Massachusetts Institute of Technology)以及哈佛医学院(Harvard Medical School)的研究人员表明:在不考虑突变相互作用的情况下,单个残基的氨基酸偏好,可以解释 8 个数据集中的大部分甚至有时几乎所有的组合突变效应 (R^2 ~ 78-98%
3/6/2024 6:32:00 PM
ScienceAI
华科大团队开发几何三角形感知蛋白质语言模型,预测蛋白质-蛋白质接触
编辑 | 萝卜皮有关相互作用蛋白质之间的残基-残基距离的信息对于蛋白质复合物的结构建模非常重要,并且对于理解蛋白质-蛋白质相互作用的分子机制也很有价值。随着深度学习的出现,人们开发了许多方法来准确预测单体的蛋白质内残基-残基接触。然而,准确预测蛋白质复合物,尤其是异源蛋白质复合物的蛋白质间残基-残基接触仍然具有挑战性。华中科技大学的研究人员开发了一种基于蛋白质语言模型的深度学习方法,通过在深度神经网络中引入三角形更新和三角形自注意力的三角形感知机制来预测蛋白质复合物的蛋白质间残基-残基接触(称为 DeepInter
11/21/2023 2:37:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
Gemini
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
DeepMind
特斯拉